A BRUNN-MINKOWSKI INEQUALITY FOR THE INTEGER LATTICE

R. J. GARDNER AND P. GRONCHI

ABSTRACT. A close discrete analog of the classical Brunn-Minkowksi inequality is obtained
that holds for finite subsets of the integer lattice. This is applied to obtain strong new lower
bounds for the cardinality of the sum of two finite sets, one of which has full dimension, and,
in fact, a method for computing the ezact lower bound in this situation, given the dimension
of the lattice and the cardinalities of the two sets. These bounds in turn imply corresponding
new bounds for the lattice point enumerator of the Minkowski sum of two convex lattice
polytopes. A Rogers-Shephard type inequality for the lattice point enumerator in the plane
is also proved.

1. INTRODUCTION

The classical Brunn-Minkowski inequality states that if K and L are convex bodies in E",
then

V(K + L)Y > V(K)Y" + V(L)Y (1)

with equality if and only if K and L are homothetic. Here K + L is the vector or Minkowski
sum of K and L and V denotes volume; see Section 2 for notation and definitions. It has long
been known that the inequality holds for nonempty bounded measurable sets, and several
quite different proofs of it are known. An excellent introduction is provided in the book of
Schneider [28, Section 6.1].

Always a seminal result in convex, integral, and Minkowski geometry, the Brunn-Minkowski
inequality has in recent decades dramatically extended its influence in many areas of math-
ematics. Various applications have surfaced, for example to probability and multivariate
statistics, shapes of crystals, geometric tomography, elliptic partial differential equations, and
combinatorics; see [28, Section 6.1], [12], [1], and [19]. Connections to Shannon’s entropy
power inequality have been found (see, for example, [8] and [9]). Several remarkable analogs
have been established in other areas, such as potential theory and algebraic geometry; see, for
example, [6], [11], [16], [18], and [22]. Reverse forms of the inequality are important in the
local theory of Banach spaces, as is explained in [23].

One proof of the Brunn-Minkowski inequality, due to Blaschke, runs as follows (see, for
example, [31, pp. 310-314]). Let S, K denote the Steiner symmetral of K in the direction
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u € S" L If K and L are convex bodies in E", then it can be shown (see, for example, [31,
Theorem 6.6.3]) that

Su(K+L)>S,K+S,L. (2)

If V(K) =V(Bg) and V(L) = V(By), where By and By, are balls with centers at the origin,
then applying (2) successively to a suitable sequence of directions yields

V(K + L) >V(Bk + Bp), (3)

which is easily seen to be equivalent to (1).
In Theorem 5.1 below we prove the following discrete analog of (3): If A and B are finite
subsets of Z™ with dim B = n, then

|A+ B| > |Dfy + Djp| - (4)

Here Dﬁ” and DI%I are finite subsets of Z™ with cardinalities equal to those of A and B,
respectively, that are initial segments in a certain order on Z" that depends only on |B].
Roughly speaking, these sets are as close as possible to being the intersection with Z"™ of
simplices of a certain fixed shape. To obtain (4), we first prove in Lemma 3.4 a discrete
analog of (2): If A and B are finite subsets of Z", and v is contained in a certain special
subset of Z"™, then

C,(A+B) D> C,A+ C,B. (5)

where C, A denotes the v-compression of A. Compression in Z" is a discrete analog of shaking,
an antisymmetrization process introduced by Blaschke (see, for example, [5, p. 77] and [7]).
Essentially, (4) is obtained by applying (5) to a sequence of suitable vectors.

The process of compression was apparently introduced by Kleitman [20], and used by
him, Bollobas and Leader [3], and others to obtain certain discrete isoperimetric inequali-
ties. There are many papers on this topic (see the survey of Bezrukov [2]). After proving (4),
we learned that Bollobds and Leader [4] also use compression to obtain a result in the finite
grid {0,1,...,k}", k € N, analogous to (4). However, their result is essentially different and
cannot be used to deduce (4); see the discussion at the end of Section 5. We are not aware
of such a close analog of the Brunn-Minkowski inequality as (4) that applies to the integer
lattice.

Just as the classical Brunn-Minkowski inequality is useful in geometric tomography (see
[12]), we believe the discrete Brunn-Minkowski inequality (4) will be useful in discrete tomog-
raphy once this new subject is developed along the same lines. For an introduction to the
latter, see [13] and [17]. Here we apply (4) to find new lower bounds for the cardinality of a
sum of two finite subsets of the integer lattice. The problem of understanding the nature of the
sum or difference of two finite sets has a long and rich history; it is, as Granville and Roesler
[14] point out, “a central problem of combinatorial geometry and additive number theory”.
The book of Nathanson [21] gives an extensive account of the work of Freiman, Ruzsa, and
others in this area, some of which has been used by W. T. Gowers in obtaining upper bounds
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in Szemerédi’s theorem (see [14] and [21, Chapter 9]). The structure of differences of multisets
turns out to be important in crystallography via the Patterson function; see [24].

Our methods actually produce lower bounds for the cardinality of a sum of two finite subsets
of E*. (It is worth remarking that the obvious idea of replacing the points in the two finite
sets by small congruent balls and applying the classical Brunn-Minkowski inequality to the
resulting compact sets is doomed to failure. The fact that the sum of two congruent balls is
a ball of twice the radius introduces an extra factor of 1/2 that renders the resulting bound
weaker than even the trivial bound (11) below.) Ruzsa [25] proved that if A and B are finite
sets in E" with |B| < |A| and dim(A 4+ B) = n, then

A+ Bl > 4]+ ) - "L, (6)
Our technique involves new reductions (see Corollaries 3.6 and 3.8) from the case of general
subsets of E" to special subsets of the integer lattice. Compressions also play a role in this
reduction, in which the dimension of the sum of the two sets, but not necessarily their indi-
vidual dimensions, is preserved. With this method, we give a new proof of (6) in Corollary 4.2
below.

It is not hard to show (see the end of Section 4) that there is no improvement of (6) that is
linear in |A|. However, under the slightly stronger additional assumption that dim B = n, we
can apply (4) to obtain in Theorem 6.5 the following inequality, considerably stronger than

(6):
n(n —1)

[A+ Bl > |A]+ (n = D|B|+ (|4] = n) "= (|B] = )" — ———". (7)
Assuming only that dim B = n, we also prove in Theorem 6.6 that
n n 1 n

|A+ B[V > |A]Y +W(IBI—R)1/ : (8)

Inequality (7) is better when |A| is small, but (8) provides an optimal second-order term as
|A| grows large. The latter should be compared to some inequalities obtained by Ruzsa [26,
Theorem 3.3] via the classical Brunn-Minkowski inequality, which, however, hold only when
|A] is large enough. The novelty of (8) is that it is similar to (but not, as far as we know,
derivable from) (1), yet it holds without cardinality restrictions on A and B.

Both (7) and (8) are consequences of (21) and (22) below. In fact, from these two equations
the ezact lower bound for |A + B| can be found for any given n, |A|, and |B|; one simply
computes the values of the variables p and r;, j = 1,...,n, from (21) and substitutes them
into (22). In this sense, the problem of finding the lower bound is completely solved here. The
authors have written a Mathematica program that does the necessary computations. When
n = 3, |A] = 2000, and |B| = 10, for example, the exact lower bound for |A + B| is 2546.
By comparison, Ruzsa’s estimate (6) and another stronger one of his, (13) below, give 2024
and 2027, respectively, while (7) gives 2321, and (8), remarkably, gives 2545. When n = 10,
|A] = 50000, and |B| = 1000, the exact lower bound is 221800, while (6), (13) below, (7), and
(8), give 59945, 59990, 92728, and 200828, respectively.
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Inequalities (7) and (8) immediately translate into new results for the lattice point enumer-
ator of the Minkowski sum of two convex lattice polytopes, Corollary 7.1 below. In Section 7
we give a different proof in the planar case that provides precise equality conditions for (7).
We also derive a version of the Rogers-Shephard inequality, an affine isoperimetric inequality
that gives the best possible upper bound for the volume of the difference body of a convex
body, for the lattice point enumerator in the plane.

2. DEFINITIONS AND PRELIMINARIES

As usual, S"~! denotes the unit sphere and o the origin in Euclidean n-space E*. If u € S™1,
we denote by u’ the (n—1)-dimensional subspace orthogonal to u. The standard orthonormal
basis for E* will be {ey,...,e,}.

If A is a set, we denote by |A|, int A, bd A, and conv A the cardinality, interior, boundary,
and conver hull of A, respectively. The dimension of A is the dimension of its affine hull aff A,
and is denoted by dim A. The notation for the usual orthogonal projection of A on a subspace
Sis AlS.

If A and B are subsets of E", their vector or Minkowski sum is
A+B={a+b:a€ Abe B},

and if r € R, then
rA={ra:ac A}.

Thus —A is the reflection of A in the origin. We also write DA = A — A= A+ (—A) for the
difference set of A.

We denote by V(E) the volume of a k-dimensional body E in E", that is, its k-dimensional
volume.

A conver lattice set F is a finite subset of the n-dimensional integer lattice Z™ such that
F=convFNZ".

We denote by Z"; the subset of Z" of points with nonnegative coordinates. Let F' be a convex
lattice set with dim F' = k, 1 < k < n, such that for distinct integers 7 and i;, 1 < j <k —1
between 1 and n, F'is of the form

F={se:s=0,1,....|F|—k}U{es,...,ei_,}.

Note that conv F' is a k-simplex. We call F' a long simplex.

A convex polytope is the convex hull of a finite subset of E". A lattice polytope is a polytope
with its vertices in Z". A lattice polygon is a polygon with its vertices in Z2.

If P is a convex lattice polytope, we denote by

G(P)=|PNZ"

the value of the lattice point enumerator G at P. A useful survey of results involving G is that
by Gritzmann and Wills [15]. Note that if K is a convex lattice set, then conv K is a convex
lattice polytope and |K| = G(conv K), so results concerning the lattice point enumerator have
a bearing on the cardinality of convex lattice sets and vice versa.
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Let P be a lattice polytope. We denote by i(P) and b(P) the number of lattice points in
int P and bd P, respectively. Pick’s theorem (see, for example, [10, p. 8]) states that when P
is a lattice polygon in E2,

b(P
vip)=ip)+ )
If K and L are compact convex sets in E”, then the Brunn-Minkowski inequality states that
V(K + L)Y" > V(K)Y™ 4+ V(L)Y (10)

with equality if and only if K and L lie in parallel hyperplanes or are homothetic. We refer
the reader to the excellent text of Schneider [28, Section 6.1] for more information.

3. SUMS OF SETS AND COMPRESSIONS
If A and B are finite subsets of E", it is easy to see that
|A+ B| > |A|+ |B| — 1. (11)

In general, this is the best possible inequality of this type; take, for example, A = {1,... k}
and B = {1,...,1}, for k, | € N. However, many other results exist that give a lower bound
for the cardinality of the sum of two finite sets. We introduce methods here and apply them
in the next sections to obtain some known and new bounds, as well as a discrete version of
the Brunn-Minkowski inequality.

Lemma 3.1. Let A and B be finite subsets of Z"™ containing the origin. Then there is a linear
map f: Z" — Z" such that f|a,p is injective.

Proof. Let k € N be such that £ > diam (A + B). We define f(z) for z = (xy,...,2,) € Z™
by

f(l') = (1‘1 + kZL'n,ZL'Q, . '7xn—1) S Zn_l-
Suppose that =,y € A+ B and f(x) = f(y). Then x; = y; for 2 < i < n — 1, and
x1— 1 = k(zn — yn). If 2, # yn, then |x; — 31| > k, contradicting k¥ > diam (A + B). It
follows that z, = y,, so x; = y; also, and x = y, as required. O

Theorem 3.2. Let A and B be finite subsets of E* containing the origin. Then there is a
linear and injective map ¢ : A+ B — Z" such that dim ¢(A) = dim A and dim ¢(A + B) =
dim(A + B).

Proof. Suppose first that n = 1. Let E be the set of all linear combinations of elements from
A + B with rational coefficients, that is, the vector subspace of R (regarded as a vector space
over Q) generated by A + B. Then E has dimension d < |A+ B| — 1. Let ¢,...,¢q be a
basis for E. If x € A+ B and © = qc; + + -+ + qqcq, we define h(z) = (q1,...,q4) € Q.
By composing h with an integer dilatation, if necessary, we obtain a linear and injective map
g: A+ B — 74

One application of Lemma 3.1, with A + B replaced by ¢g(A + B), produces a linear and
injective map fog: A+ B — Z%!. Applying Lemma 3.1 in this way successively another
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(d — 2) times, we obtain a linear and injective map ¢ : A + B — Z. The map ¢ clearly
preserves dimension. This completes the proof for n = 1.

Suppose now that n > 1. We may assume, without loss of generality, that dim(A+ B) = n.
By applying a nonsingular linear transformation, if necessary, we may also assume that e; € A,
1<i<dimA,ande; € B,dimA+1 <7 <n. If Fis a finite subset of Z" and 1 < i < n, let

E;={x;:x=(x1,...,2,) € E}.

Let ¢; : (A+ B); — Z be the map just constructed when n = 1 and A and B are replaced by
the sets A; and B;. Define ¢ : A+ B — Z" by

¢(z) = (¢1(21), - ., dnlan)) -

Clearly ¢ is linear and injective. Moreover, ¢ preserves the dimension of A and A+ B because
for each i, ¢(e;) = t;e;, where t; # 0. O

Corollary 3.3. Let A and B be finite subsets of E". Then there are subsets A" and B' of 7"
satisfying (1) |A'| = |Al, |B'| = |B|, and |A' + B'| = |A+ B, and (ii) dim A" = dim A and
dim(A" + B') = dim(A + B).

Proof. By translating A and B, if necessary, we may assume that they both contain the origin.
Let A" = ¢(A) and B’ = ¢(B), where ¢ is the map from the previous theorem. O

The previous corollary allows us to focus on subsets of Z". We now employ ideas introduced
by Kleitman [20] (see also Bollobas and Leader [3]).
We shall need quite a bit of notation. Let

V=A{v=(v,...,v,) €Z" : v; <0 for at least one i,1 <i < n}.
IfveV,let
Z(v)={z€Z} :x+vgZ"}.
Suppose that A is a finite subset of Z7, v € V, and « € Z(v). The v-section of A at z is
Ay(z) ={m e N:z —mv € A}.

Note that the v-section of A is a subset of N, not A. Since the lines parallel to v through
points in Z(v) partition Z%, we can define the v-compression C,A of A to be the unique set
such that
(CLA)(x) ={0,1,...,|A,(z)] — 1},
for all x € Z(v). The set A is called v-compressed if C,A = A.
It is worth remarking that if L is a line parallel to v, then

IC,ANL| =|ANL|,

so Cy A has the same discrete X-ray (see [13]) in the direction v as A, and is the subset of Z7
with this property whose points are moved as far as possible in the direction v. In particular,
any compression of a set does not change its cardinality.

If AC Z" is —e;-compressed for each ¢ with 1 <17 <n, we call A a down set. It is easy to
see that A is a down set if and only if x € A and © — ¢; € Z'} imply that v —¢; € A.
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Let
W ={v=(vi,...,v,) € Z" : v; = —1 for some i and v; > 0 for j # i}.
Note that if v € W with v; = —1, then Z(v) = Z" Nej-.

Lemma 3.4. Let A and B be finite subsets of Z'y, and let v € W. Then

Cy(A+ B) > C,A+C,B.
Proof. Let x € Z(v). Suppose that z —mv =a+b € A+ B, where m € N, a € A, and b € B.
Choose y, z € Z(v) and k, | € N such that y — kv = a and z — lv = b. Then since v ¢ Z"; and
Z(v) = Z"Ne; for some 4, we must have z = y+ z and m = k + [. Using this fact, we obtain
(A+B)y(z) = {meN:z—mve A+ B}
= U{keN:y—kve A} +{leN:z2—lweB}:z=y+2z2 and y,2 € Z(v)}
U{A,(y) + By(2) :z =y + 2, and y, 2z € Z(v)}.
Therefore, by (11),
(CoA+ CyB)y(x) =
= U{(CvA)u(y) + (CuB)u(2) s 2 =y + 2, and y,z € Z(v)}
= U{{Oa 17 ceey |Av(y)| - 1} + {07 17 ceey |Bv(z)| - 1} =Ytz and Y,z € Z(U)}

C {0,1,...,max{[A,(y)| + [Bu(2)| =2: 2 =y + 2, and y,z € Z(v)}}
c {0,1,...,max{|A,(y) + By(2)| —1: 2=y + 2, and y,z € Z(v)}}
= (Cv(A + B))v(x)
The lemma follows immediately. O
Corollary 3.5. Let A and B be finite subsets of Z",, and let v € W. Then
|A+ B| > |C,A+ C,B]. (12)
Proof. Since |A + B| = |C,(A + B)|, this follows directly from the previous lemma. O

We remark that Lemma 3.4 and Corollary 3.5 do not hold for all v € V; the additive
structure of Z(v) when v € W is needed. To see this, let

A =7 Nconv{(0,0),(1,0),(1,3),(0,4)}
and

B - Z2 ﬂ conv {(07 0)7 (]'7 0)7 (]'7 2)7 (07 3)}'
If v=(1,-2), then |A+ B| =21 and |C,A + C,B| = 23.

Corollary 3.6. Let A and B be finite subsets of E*. Then there are down sets A" and B' in
7% satisfying (i) |A'| = |A|, |B'| = |B|, and |A+ B| > |A"+ B'|, and (ii) dim A’ = dim A and
dim(A" + B') = dim(A + B).
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Proof. By Corollary 3.3, we may assume that A and B are subsets of Z". We may also assume
that dim(A + B) = n, and, by translating if necessary, that A and B contain the origin. Let
dim A = k. Choose linearly independent vectors x; such that z; € A, 1 <i < k and z; € B,
k+1<i<n. Let ¢ be a linear transformation of E* such that ¢(z;) = e;, 1 <i < n. Since
the matrix associated with ¢ has rational coefficients, there is an m € N such that ¢(A) and
¢(B) are subsets of the lattice (1/m)Z"™. Then m¢(A) and m¢(B) are subsets of Z".

Let S = {o,e1,...,e,} and T = {o,ey,...,¢e;}. Note that mT C m¢(A), mS C m¢p(A) U
m¢(B), and that we have not changed any of the relevant cardinalities or dimensions in passing
from A and B to m¢(A) and me(B).

Choose t € Z" so that m¢(A)+t and m@(B)+t are subsets of Z'y. Then mT+t C mp(A)+t,
and mS+t C (mé(A)+1t)U(me(B)+1t). Now by —e;-compressing meo(A) +t and meo(B) + ¢
for each ¢ with 1 < ¢ < n we obtain down sets A’ and B’ such that T'c A’ and S ¢ A’ U B'".
Therefore (ii) holds, and it follows from Corollary 3.5 that A" and B’ satisfy (i). O

We now give another reduction to even more special sets. Note, however, that the dimension
of either of the individual sets is not guaranteed to be preserved.

Lemma 3.7. Let A and B be down sets in Z'y with dim(A + B) = n. There exists a finite
sequence of vectors in W such that the corresponding compressions applied successively to both
A and B result in long simplices A" and B', respectively, such that dim(A' + B') = n.

Proof. Since A and B are down sets in Z'} with dim(A + B) = n, we have o € AN B and
S={o,e1,...,e,} CAUB.

Suppose first that aff ANaff B # {o}. Since A and B are down sets, we can assume without
loss of generality that e, € AN B. Note that if e, ¢ A, then A C e}, and similarly for B.
Let E4 = Anelife, € A, E4=0ife, ¢ A, and define Ep analogously. Let w, = y; — ey,
where y; € F4 U Ep is such that [|w;]|| is maximal. Then w; € W. Since e; € AN B, we have
y1 # o, and then

(Cp, AUC,,B) \ el = {e,}.

Now —e;-compress for 1 < 7 < n — 1 to obtain down sets A; and B; from Cy, A and C\, B,
respectively. Note that o € A; N By, S C A; U By, and

(Al U Bl) \ 6:{ = {en}

Let Fy, = A1 N e# N e,f_l ife, 1 € Ay, Fa, =0 if e, 1 € Ay, and define Fp, analogously.
Let wy = yo — €,_1, where yo € Fy, U Fp, is such that ||ws|| is maximal. Then w, € W. Since
e1 € AN B, we have y5 # o, and then

(szAl U szBl) \ (67{_ N 6#—1) = {en—b en}'

Now —e;-compress for 1 < ¢ < n — 2 to obtain down sets A, and B, from C,, A, and C,, B,
respectively. Note that o € Ay N By, S C Ay U By, and

(A2 U Bs) \ (e, Ney 1) = {en—1,en}.



A BRUNN-MINKOWSKI INEQUALITY FOR THE INTEGER LATTICE 9

Continuing in this fashion, we obtain sets A, and B, that are clearly long simplices with
the first coordinate axis as axis. Let A’ = A, and B’ = B,, and note that dim(A’ + B’) = n.
This completes the proof under the assumption that aff A Naff B # {o}.

Suppose that B = {o}. Then A+ B = A and the above proof still works since S C A
implies that y; # o for 1 < i < n. Similarly, the result holds when A = {o}.

Finally, suppose that aff A Naff B = {0}, where dim A > 1 and dim B > 1. Then we may
assume that A C H = aff {0,e1,...,e;} and B C H*. In this case we can apply the result
already proved first for the case B = {0} (with n replaced by k, identifying H with E¥), and
then for the case A = {0} (with n replaced by n—k, identifying H+ with E*~*), to obtain long
simplices A’ C H and B’ C H* with the required properties. (Note that the compressions
used in reducing A to a long simplex in H do not affect B, and those used in reducing B to
a long simplex in H* do not affect A.) 0

Corollary 3.8. Let A and B be finite subsets of E*. Then there are long simplices A" and B’
in 27 satisfying (1) |A'| = |A|, |B'| = |B|, and |A+ B| > |A' + B'|, and (ii) dim(A' + B') =
dim(A 4+ B). If aff Anaff B # {o}, we may suppose in addition that A’ and B' have the

T1-GTiS asS COMmMon aris.

Proof. This is a direct consequence of Corollaries 3.6 and 3.5 and Lemma 3.7 (and its proof).
O

4. KNOWN LOWER BOUNDS FOR THE CARDINALITY OF THE SUM OF SETS

The following result is due to Ruzsa [25].
Proposition 4.1. If A and B are finite sets in E" with |B| < |A| and dim(A + B) = n, then

|B]—1
|A+ B| > [A]+ ) min{n, |A| —i}. (13)

i=1

Proof. By translating A and B, if necessary, we may assume that o € ANB. If aff Anaff B =
{o}, then clearly |A + B| = |A||B|, which implies (13). Suppose that aff A N aff B # {o}.
By Corollary 3.8, we can assume that A and B are long simplices in Z'} with the z;-axis as
common axis. We prove (13) by induction. For n = 1 it is equivalent to (9). Suppose it is
true in EF for k < n.

If dim A = dim B = n, we have B C A, and a straightforward computation shows that

n(n+1)
5
Suppose that |A| = |B|+ s. If s > n — 1, then the right-hand side of (13) is

|A+ B| =n|A| + |B| —

+1
Al +n(|B] - 1) < n|A| +|B| - %
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If s <n —1, then the right-hand side of (13) is

Al +n(B|+s—n)+(n—1)+---+(s+1) = |A|+n|B|+ns—n®>+ — —

1
< nla+ |5 - "L

proving the proposition in this case.
Suppose that dim B < n. Without loss of generality, we may assume that B C {x, = 0},
so that e, € A and
A+ B=((ANn{z, =0})+ B)U (B +e,).
If |B| < |A|, then |B| < |A| —1=|AN{x, = 0}, so by the induction hypothesis,
|B|—-1
A+ B| > [A]—1+ ) min{n—1,JA|—1—i}+|B]|
i=1

|B|—1

= |A[+ ) min{n, |A| —i}.
1=1

If |A] = |B|, then |A] — 1 =|AN{z, =0} < |B], so by the induction hypothesis,
|A|—2
|[A+B| > [B|+ Y min{n—1,|B|—i}+|B|
i=1
|B|—2
= |Al+ > min{n - 1,|A| — i} + B
i=1
|B|—2
= JAl+ > min{n, |A| —i+1} +2
i=1
|B|—1

> [Al+ ) min{n, |A| —i}.
=1

Finally, if dim A < n, we may assume that A C {z,, = 0} and e, € B, in which case, again
by the induction hypothesis,
|B|—-2
A+ B| > A+ ) min{n—1,]4] — i} +|A]
i=1
|B|—2
= [Al+ > min{n, |A| =i+ 1} + [A] - |B| + 2
i=1

|B|-1

> JAl+ ) min{n, |A| —i}.
1=1
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|

The following corollary, also stated by Ruzsa [25], follows from (13) after a simple compu-
tation.

Corollary 4.2. If A and B are finite sets in E* with |B| < |A| and dim(A + B) = n, then
n(n+1)
—

Rusza’s inequality (13) and its weaker form (14) contain several previous results in the
literature. For all but finitely many pairs {|A|,|B|}, Ruzsa gave an example to show that
equality can hold in (13), and thus that this inequality is the best possible under its hypotheses.
In all of these examples, either dim A < n or dim B < n, unless |A| = |B|. Other related

results are given by Ruzsa in [26] and [27]; see also [30].
No inequality of the form

|A+ B| > |A| 4+ n|B| — (14)

|A+ Bl > c|Al + fi(|B]) + f2(n) (15)

can hold with ¢ > 1 for all finite sets A and B in E* (or Z") with dim A = dim B = n. To see
this, let r € N and F, = S, N Z", where S, is the n-simplex

Sy ={(x1,...,x,) ;> 0and xy + -+ -+ 2, <71}

r+n
n-(70)

Now let r € N, A= A(r) = E, and B = FE;. Then A+ B = E,,1, so (15) would imply that

<T+Z+1>20<T—;n>+g(n)‘

r+n+1>c(r+1)+g(n),
which is false for large r if ¢ > 1.

In Section 6 below, we offer new nonlinear inequalities that are not implied by (13); see
Theorems 6.5 and 6.6.

We have

This in turn implies that

5. A BRUNN-MINKOWSKI INEQUALITY FOR THE INTEGER LATTICE

We begin with some more notation.
Let B be a finite subset of Z" with |B| > n + 1. For every x € Z" we denote by wg(x) the
B-weight of x = (x4, ..., x,), defined by

I -
wg(z) = Bl—n —|—sz~.
=2

Define an order on Z", the B-order, by setting x <pg y if either wg(z) < wg(y) or wg(x) =
wp(y) and for some j we have z; > y; and z; = y; for all i < j. Note that when |B| =n+ 1,
the B-order is just the simplicial order defined in [3]. Let VP = {v € Z" : v <3 o}.
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For m € N, let DE be the union of the first m points in Z% in the B-order. The set D2
is called a B-initial segment. It is easy to see that DI%I is an n-dimensional long simplex and

D}, is an (n — 1)-dimensional long simplex. The points of D[}, are
o0<pe  <p2e <p---<p (|B| —n)el <pey<p-:--<pé€y.

Notice that all the above definitions depend only on the cardinality of B. As was explained
in the introduction to this paper, the following theorem can be viewed as a discrete Brunn-
Minkowski inequality in the integer lattice.

Theorem 5.1. Let A and B be finite subsets of Z™ with dim B = n. Then
|A+ B| > |Dfy + Dy

The proof of Theorem 5.1 is quite long and will proceed by a succession of lemmas, through-
out which the set B will be a fixed subset of Z’}. Since B is fixed, we shall write S = DﬁBl.
Note that none of the definitions before Theorem 5.1 change if we replace B by S.

Lemma 5.2. We have z <g vy if and only if z —y € V5.
Proof. This follows immediately from the definitions above. O

Lemma 5.3. A finite set F' C Z%} is an S-initial segment if and only if it is v-compressed for
every v € V7,

Proof. The set F' is not an S-initial segment if and only if there are y € F, z ¢ F, with
2z <g y. By Lemma 5.2, the previous condition holds if and only if S is not v-compressed
where v =2 —y € V5. O

The following lemma will not be needed in this section.
Lemma 5.4. An S-initial segment is a convex lattice set.

Proof. Let F be an S-initial segment and let x,y € F be such that © <g y and z = (1 —t)z +
ty € 27, where 0 <t < 1. Then v <g 2 <5y, s0 z € F' and F'is a convex lattice set. O

If F'is a finite subset of Z7, let the S-height hg(F) of F' be the sum of the positions in
the S-order occupied by the points of F. Then hg(F) € N; for example, we have hg(D3) =
m(m + 1)/2 for each m € N.

Lemma 5.5. Let F' be a finite subset of Z'.. Suppose that Fy = F and for each j € N,
Fi1 = Cy, Fj for some v; € V5. Then there is a k such that F; = Fy for each j > k.

Proof. Regarding the v;-compression as a bijection from Fj to Fj;, we see from its definition
and Lemma 5.2 that it can only lower the position of points in F}; in the S-order, and if
F,;{1 # Fj, the position in the S-order of at least one point in F} is lowered. Therefore
hs(Fji1) < hs(F;) unless Fj, = Fj, so there is a k such that F; = F}, for each j > k. O

Lemma 5.6. It suffices to prove Theorem 5.1 when B = S = D|]133| and A C Z7 isv-compressed
for everyv € W NV,
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Proof. By translating A and B, if necessary, we may assume that they are subsets of Z}.
By applying. for each i = 1,...,n, a —e;-compression to A and B, we may also assume, by
Corollary 3.5, that A and B are down sets.

Letting A = B in Lemma 3.7, we see that there is a finite sequence of vectors in W such
that the corresponding compressions applied to B result in a long simplex, which in fact is S.
Suppose that the same sequence of compressions, applied to A, result in a set A’. Then by
Corollary 3.5, we have |A+ B| > |A' 4+ S|. Now we apply Lemma 5.5 where F' = A’ and {v;}
is a sequence in which each member of the finite set W NV appears infinitely often. Then
the resulting set A” = F}, is clearly v-compressed for every v € WNV?*. By Lemma 5.3, these
compressions leave S unchanged, so by Corollary 3.5 again, we have |A' + S| > |A" + S|. O

We now settle the case n = 2 of Theorem 5.1.
Lemma 5.7. Let A and B be finite subsets of Z2 with dim B = 2. Then

|A+B| > |D + Dfy| .
Proof. By Lemma 5.6, we may assume B = § = Dﬁ3|. We shall prove that
|[A+ S| > |D|€4| + 5|

by induction on the S-height of A. Note that hg(A) > (|A| + 1)|A|/2, and if hg(A) =
(IA[+1)|A]/2, then A = D7), and the inequality is trivial. Suppose that hs(A) > (|A[+1)|A]/2
and that the inequality is true whenever A is replaced by a subset of Z? of the same cardinality
but smaller S-height than A.

Let v € WN VS By Lemma 5.6, we may assume that A is v-compressed for every v €
W NV*3. In particular, A is a down set which is u-compressed, where u = (|S| — 2)e; — es.

Let y = (y1,92) € A be of maximal position in the S-order and let z = (21, 22) € Z2 \ A be
of minimal position in the S-order. Then z <g y, because A # Dﬁ”. Since A is u-compressed
and y € A, we have ¢ = (y1 + (|S]| — 2)y2,0) € A. It follows from the fact that A is a down
set that (k,0) € A for every k < y; + (|S]| — 2)ya. Therefore z, > 0.

Note that ¢’ is the unique point of A with maximal first coordinate. Therefore if A’ =
A\{y'}, we have (y1+(]S]|—2)(y2+1),0) € (A+S)\(A'+S5), implying that |A+S| > |A'+S|+1.
Now let A” = A" U {z}. Then |A"| = |A|, and since z <g y', we have hg(A") < hg(A). The
hypothesis on z and z5 > 0 imply that z 4+ u € A, and since A is a down-set we conclude that
the only point that can belong to (A”+S)\ (A'+S) is z+ey. Therefore |[A”+ 5| < |A'+S|+1.
By the induction hypothesis,

A+ S| > |A+5|+1> A"+ 5| > D + 9],
as required. O

Let F' be a finite subset of Z7,. We define sets X;(F), 1 < i < n, as follows. If 1 <i <n
and m € Z, denote by F[i, m] the projection of F' N {xz; = m} onto the hyperplane {z; = 0}.
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For each m € Z, let

m
P, = 7" - = — 5. 16

{:1:6 w2 ws(o) |S|—n} (16)
The points in P, lie in a hyperplane containing (m, 0, ...,0). Denote by F[1, m] the projection
of FN P, onto the hyperplane {z; = 0}. Let S; = SN{x; = 0}, and note that S; is an (n—1)-
dimensional long simplex in {x; = 0}. For 1 <1i < n, define X;(F) to be the subset of Z" for
which

Xi(F)[i,m] = Dty

where we are identifying {z; = 0} with Z"!.

In other words, if 1 < ¢ < n, the projection of X;(F) N {z; = m} onto {z; = 0} is
the S;-initial segment, defined in {z; = 0}, with the same cardinality as the projection of
Fn{z; = m} onto {z; = 0}. Similarly, the projection of X;(F) N P,, onto {x; = 0} is the
Si-initial segment, defined in {z; = 0}, with the same cardinality as the projection of F'N P,
onto {x; = 0}. Therefore these definitions constitute a sort of (n—1)-dimensional compression
in hyperplanes parallel to a fixed subspace.

It is not difficult to see (and can be proved from the definitions in a routine exercise) that

(F + S)[i,m] = Fli,m — 1]U (F[i,m] + S;), (17)
for 1 <7 <mn, and

(F+8)[1,m]=F[1,m]UF[1,m—1U---UF[1,m—|S|+n+1U(F[1,m —|S|+n] + S1).
(18)

Lemma 5.8. Let F' be a finite subset of Z' and let 1 < i < n. Then hg(X;(F')) < hg(F),
with equality if and only if X;(F) = F.

Proof. Let v = (z1,...,2,) € Z" with z; = m, and let 2’ be the projection of z onto {z; = 0}.
Then 2} = 0 and 2, = x; for all j # i. It follows that the S-order of two points in {z; = m}
agrees with the S;-order of their projections onto {z; = 0}. It is then clear from the definition
of X;(F) that hg(X;(F)) < hg(F).

If 1 < i< nand X;(F) # F, there is an m € N such that F[i,m] is not an S;-initial
segment. Let y' € F[i, m] be of maximal position in the S;-order and 2’ € {z; = 0} \ F[i, m]
be of minimal position in the S;-order. Then 2’ <g, y'. By the definition of X;(F'), we have
y' € {x; = 0} \ X;(F)[i,m] and 2’ € X;(F)[i,m]. Let y,z € {x; = m} be the points whose
projections onto {x; = 0} are ¢/, 2', respectively. Then y € F'\ X;(F), z € X;(F) \ F, and
z <g y. Therefore hg(X;(F)) < hg(F). The proof for i =1 is similar. O

HFCZylet Zp={2—y:yeF,ze€Z\ F}.

Lemma 5.9. If F' C Z", then F is v-compressed if and only if v ¢ Zp.
Proof. If v € Zp, there are y € F' and z € Z" \ F with v = 2 —y, so F' is not v-compressed.
Conversely, if F' is not v-compressed, there are y' € F and 2’ € Z"\ F such that 2’ = y'+mw for

some m € N. Let j € N be maximal such that y'+jv € F. lf y =y +jvand z = ¢y'+ (j+1)v,
then v =2 —y € Zp. O



A BRUNN-MINKOWSKI INEQUALITY FOR THE INTEGER LATTICE 15

Lemma 5.10. Let F be a finite subset of Z" and let v € V* with ws(v) = 0. If F is not
v-compressed, then F[1,m] is not an Si-initial segment for some m € N.

Proof. Suppose that F is not v-compressed, where v € V° and wg(v) = 0. Then for some
J we have v; > 0 and v; = 0 for all 7 < j. By Lemma 5.9, v € Zp, so there are y € F
and z € Z% \ F with v = z — y. Therefore wg(y) = wg(z), so there is an m € N such that
Y,z € Pp,.

Let 3/, 2, and v’ be the projections of y, z, and v, respectively, onto {z; = 0}. Then
y € F[1,m], 2/ € {1 =0} \ F[1,m], and v' = 2’ — /. If v; = 0, then wg, (v') = ws(v) =0,
v; > 0 and v; = 0 for all 7 < j, where j > 2. If v; > 0, then

(v) = ws(v) = o < ws(v)

wg,\V ) = wg\V |S|—n Wg\V).
In either case we have v/ <g, o, so v' € V5. Therefore v' € Zp(im), so F[1,m] is not
v'-compressed. By Lemma 5.3, F[1,m] is not an S;-initial segment. O

Lemma 5.11. Let F' be a finite subset of Z", n > 2. If X;(F') = F fori=1,2, then F is an
S-initial segment.

Proof. Let y € F be of maximal position in the S-order and let z € Z" \ F' be of minimal
position in the S-order. If y <g z then F'is an S-initial segment.

Suppose that z <g y. By Lemma 5.10 and our assumption that X;(F) = F, F is v-
compressed for every v € V¥ with wg(v) = 0, so ws(y) > wg(2). If m = ws(y)(|S| — n),
then y € P, and y' = (m,0,...,0) is the point in P,, of minimal position in the S-order,
so y' € F. Similarly, if m" = wg(2)(|S| — n), then z € Py, and if 2’ is the point in P, of
maximal position in the S-order, we have 2’ ¢ F. By the definition of S-order and the fact
that n > 2, 2z, = 0. Since ¢/, 2’ € {x5 = 0}, we have

ws, (y') = ws(y') = ws(y) > ws(z) = ws(2') = ws, ().

But ¢ € F[2,0] = Fn{xy = 0} and 2 ¢ F[2,0], so F[2,0] is not an Sp-initial segment.
Therefore X5(F') # F, contradicting the hypothesis. O

The previous lemma is not true when n = 2. For example, let S = {(0,0), (0,1), (1,0)} and
F = 220 conv {(0,0), (0, 1), (3,0), (2, 1)}.

Lemma 5.12. If I' is an S-initial segment then so is '+ S.

Proof. The proof is by induction on n. The result is trivial when n = 1. Assume it is true
in Z"~! (for all long simplices S in Z%™') and suppose that F' + .S C Z" is not an S-initial
segment.

Let y € F' 4+ S be of maximal position in the S-order. If y = a + b, where a € F and b € S,
we must have wg(b) = 1. Let z € Z" \ (F'+.S) be of minimal position in the S-order, so that
2 <g y by our assumption. Every x € Z" with wg(z) < wg(a) must belong to the S-initial
segment F', so every x € Z" with wg(z) < ws(a) + 1 = wg(y) belongs to F' + S.
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Therefore ws(y) = ws(z). If v = 2 —y, then v € V°, wg(v) = 0, and F + S is not
v-compressed. By Lemma 5.10, there is an m € N (in fact m = (|S| — n)ws(y)) such that
(F 4+ S)[1,m] is not an S;-initial segment.

By Lemma 5.8, hg(X;(F)) < hg(F'). Since F' is an S-initial segment, hg(X;(F)) = hg(F),
so Lemma 5.8 implies that X;(F) = F. Therefore F[1,m — 1] is an Sj-initial segment. By
the induction hypothesis, (F'+ S)[1,m] = F[1,m — 1] + S; is also an S;-initial segment. This
contradiction completes the proof. O

Proof of Theorem 5.1. The proof is by induction on n. For n = 1, Theorem 5.1 is a direct
consequence of (9) and Lemma 5.7 disposes of the case n = 2. Suppose that n > 2 and that
Theorem 5.1 holds in all dimensions less than n.

IfmeN, let
Fm ={F CZ% :|F|=m and |F + S| is minimal}.

Let F' € Fja| be of minimal S-height. We will show that F' = Df,.

We claim that for 1 < ¢ < n, we have

48] > 1X,(F) + 5].
To see this, let m € N. Using (17), Lemma 5.12, the induction hypothesis, and (17) again, we
obtain
(X;(F)+ S)[i,m]| = |X;F[i,m — 11U (X;F[i,m] + S|

max{|X;F[i,m — 1]|, | X;F[i,m] + S;|}
maX{|F[i7m - 1”7 |F[Zam] + Sz|}
|Fi,m — 1 U (Fli,m] + S| = |[(F' + S)[i, m]|.

IN N

This proves the claim.

By our assumption on F, we must have hg(X;(F')) = hg(F) for 1 < i < n. Analogously,
using (18) instead of (17), we conclude that hg(X;(F')) = hs(F). Then Lemma 5.8 implies
that X;(F) = F for 1 <i <n. By Lemma 5.11, F' is an S-initial segment, so F' = Dﬁ”. O

Bollobds and Leader [4] obtain a result in the finite grid [k]* = {0,1,...,k}", k € N
analogous to (4). Addition of sets A and B in [k]" is defined by

A+, B={z€[k]":x=a+bac A be B}.

In other words, points in the usual sum not lying in the grid are simply ignored. For every
x=(x1,...,2,) € [k]", let

wk(x) = i inki,
=1

and define an order on k™ by setting x <, y if and only if wi(z) < wy(y). The main result of
[4] is that the minimum of |A 4+ B| over down sets A and B of [k]" is attained when A and
B are initial segments with respect to the order <;. The restriction to down sets is generally
necessary because of the definition of addition +; of sets in the grid.
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We can also restrict to down sets without loss of generality, as we showed in Corollary 3.6,
but the fact that some points in the usual vector sum are not counted by Bollobéas and Leader
is the first important difference between their result and ours. The second is that any initial
segment in the order <, with cardinality less than £41 must be a one-dimensional set, whereas
the initial segment DI%I in the B-order is always n-dimensional. These two differences mean

that if we choose a grid [k]" that contains down sets A and B in Z", the lower bound for
|A 4+ B| from [4] will generally be smaller than the lower bound for |A + B| provided by (4).

6. NEW LOWER BOUNDS FOR THE CARDINALITY OF THE SUM OF SETS

In the following, the usual conventions

n ) n
<k>—01fn<k, and <0>—
apply.

Lemma 6.1. Forn>1 andr > 1,

(1 (1)) (1) 2

P(r)=—(n-1) (H;:{JFHZ—l)'

Proof. Since (r+3)/(j+1) > (r+n—1)/nfor 0 <j <n—1, we have
— —1\"
<r+n 1>2<l> , (19)
n n

<T+Z—1>_(n_1)20

for r > 2. Therefore we can use (19) to obtain
R _ _
(r—irn 1) <<r+n 1>_(n_1)>_<r—|—n 1>§
n n n—1
n r+mn-—1 —m=1)) - r+n-—1
r+mn-—1 n n—1
[ r+n-1 n n\ _ nhn-1)
B n r+n—-1 r r+n-—1

n—2 .
r+7 n
=—(n—1 .
(n )(71_[]'+1+7“+n—1)

where

with equality if » = 1. Also,

IN
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O
Lemma 6.2. Forn>1 andr > 1,
(n—1)/n
r+n—1 r+n—1
() () =ew
where
n—2 .
r+
r)=—(n-1 -
Qi =-w-yI 5
Proof. This is proved as in the previous lemma. Il
Lemma 6.3. Forn > 1 and r > 1, we have
n—1 rdn—1\"""(r4n—1 [ r+tn-1 <_(n—1)(n—2)
n n n—1 n—2 - 2 ’
Proof. Using (19), we obtain
n—1 ren—1\"""(r+n—1 r+n-—1
— <
n n n—1 n—2 -
n—1 r+n—-1Y\ (r+n-1
n(n—1)(2 —n) r+n-—1
r(r+1)(r+n-1) n
B (n—l)(2—n)ﬁr+j
2 j:2]—|—1
< _(n—l)(n—?)_
- 2
O

Lemma 6.4. Let n > 1 and ¢ > 0, and for r > —1, let
. r+n\ [ r+n
S(r)-c( n > (n—l)'
If ri > —1, then the mazimum value of S on [—1,r1] occurs when r = —1 or ry.
Proof. If n =1, S is linear and the result follows immediately. Suppose that n > 2. We have

so=£ (750 (1 e 3)

Jj=2
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The roots of S” are solutions of the equation

n

1 1
Zr%—j:(n/c)—l—r'

=2
Since the left-hand side is strictly decreasing in r and the right-hand side is strictly increasing
in 7, there is at most one solution. The lemma follows directly. O

When dim B = n, the following nonlinear inequality is considerably stronger than (14). (A
different proof of the case n = 2 is obtained by combining Theorem 5.1, Lemma 5.4, and
Corollary 7.4 from the next section.)

Theorem 6.5. Let A and B be finite subsets of E* with |B| < |A| and dim B = n. Then
n(n —1)
—5

Proof. For n = 1 the inequality is trivial, so we may assume n > 2. By Theorem 5.1, it is
enough to prove the result when B is a long simplex and A is a B-initial segment.
Note that if A is a “perfect” B-initial segment, that is, A = rB for some r € N, then

Al=(sl=n (Y (T ) = s

[ A+ B| > Al + (n = D|B| + (|A] = n)" /" (|B| = n) /" — (20)

n—1

say, and of course A+ B = (r+1)B, so |A+ B| = f(r +1). In general we can write

_ ri+n—1 - rit+tn+1—j
Jj=

:(|B|_n)<r1+g—1>+(p+1)<rl:brfl_1>+zi;<rj;ff—1j_j>’ (21)

where 0 <p < |Bl—-n—1,r >ry>--+->r, > —1 and with the condition that if r; = r,
then p = |B| —n — 1. In fact, there is a unique finite sequence (p,r1,...,r,) for each natural
number |A| under these conditions. Our assumption |B| < |A| implies that r; > 1.

It will be convenient to write

b= |B|—n.

_ ri+n ri+n - ritn+2-7\
|A+B|—b( ; )+<p+1)(n_1)+2( ntl-j ) IR, -

=2

Then

where R = R(rg,...,rp) ={i: 2<i<n, r; =—1}. (We omit the proof of this fact, which
is a straightforward consequence of the geometry.) Using Pascal’s rule, we get

. ri+n—1 ri+n-—1 - ri+tn+1l—71Y\
|A+B|—|A|_b< o >+(p+1)< o >+Z< e i ) IR).
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Let
~1
F=(n—1)b+ (JA] —n)""D/mpt/m 4 % — (|44 B| - |A)). (24)

We must show that F' < 0, and claim first that this holds for n = 2. From (21), we obtain

|A|:b<“;1>+(p+1)(r1+1)+r2+1.

Substituting this and (23) into (24), we see that we must prove

1/2
F=b+<b<“;1>+(p+1)(7"1+1)+r2—1> B2 —b(ri+1) — (p+1) + |R| <0,

or, equivalently, that

Flz(br1+(p—|—1)—|R|)2—(b(rlgl>+(p+1)(7“1+1)+7“2—1>b20.

It can easily be verified that this holds when b =1, and

or,
0b

= 2(1)7"1—0—(19—|-1)—|R|)7"1—2b<rl;_1 > —(p+1)(r+1)—ry+1

= (Tl - ]-)(le +p+ 1) - 2|R|7"1 — T9 + 1.
If ro > —1, then |R| =0 and —=2|R|ry —r9+1 > —r; + 1. If 1o = —1, then |R| = 1, and
—2|R|ry —ro +1 > —2r; + 2. Therefore
oF,

b > (ry—1)(mb+p—1) >0,

when b > 1 and r; > 1. Therefore F; > 0, proving the claim.
For the rest of the proof we may assume that n > 3. Using the inequality

(z + y)(n—l)/n < zn=1/n 4 (n 1> yx_l/”,
n

we obtain

(|A| _ n)(n_l)/nbl/n —

n (n—1)/n
_ ri+n-—1 ri+n-—1 ritn+l—77Y\ 1/n
- (b( . )+(p—|—1)< o >+Z< A n b

=2
r+n—1 S rjtn+l—7Y
(pH)( n—1 >+Z< n+1—j "

r+n-—1 (n=1)/m n—1 - j=2
b + 1/n
n n <r1+n—1>

IN

n
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Substituting this estimate and (23) into (24), we have

n —1/n
- 1
F§G=EMHJﬂ@+U+§:HF%n_D<m+g 1) +ﬂ%rl,
Jj=2

with
(n—1)/n
rr+n-—1 B r+n-—1 B
n—1 r+n—1 ~l/n ri+mn—1 ri+n—1
HIZ - 5
n n n—1 n—2
and

n—=1\(rm+n-1\"""(rtn+1-j rin4+1—j
Hj: . — . + €5,
n n n+1—y n-—3j

where €; =1 if r; = —1 and €; = 0 otherwise, 2 < j < n.
By Lemma 6.2,
oG
%ZHOSQ(H)‘F(”_D <QM)+(n-1)=0,

and by Lemma 6.3,

oG
- = H; <0.
op !
Also, by Lemma 6.4, the maximum value of H; in V occurs when r; = —1 or r; = 7y,

2 < j < n. Therefore it suffices to show that G = G(b,p,r1,...,7m) <0 when b=1, p =0,
r; =1y for 1 <i <k, where 1l <k <mn,and r; = —1 for £k +1 < i < n. Denote this value of
G by G(k,ry).
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We claim that G(k,r1) < G(1,r1) for 2 < k < n. To see this, suppose that k& > 2. Using
(19), we find that

G(k,r) —G(1,r) =
B i((n 1)(r1+n—1)_1/"<r1+n+1—j)_<r1—|—n+1—j))
= n n n+1—j n—j
71=2
i n—1 m+n+l—j5\ [(rn+n+l—j
= r+n-—1 n+1-y n—j
n—1 r+ny) (rn+n+l-k (it n rn+n+1—k
rm+n—1 n—1 n—k n—2 n—k—1
_ <r1+n+1—k) < n—1 > ﬁr1+n+2'—j_1 N
ri+n—1 e n+1—j
n—1 n—=k kr1+n—|—2—j
+<r1+2> (n—l_?‘:l_[2 n+1-—j ))

k :

ri+n+1-—k 1 1 r+n+2-—j
< -1 — —1]<0
s (n )< n—k ><r1+n—1 r+2 H n+l—j -

Jj=2

VAN

since n > 3. It remains to show that

r+n—1Y)"" n(n —1)
G(l,r)=Hy+ Hy —(n—1) n —l—TSO.
By Lemma 6.1,
. —1/n
HO—(n—1)<r+Z 1) < P(r)+(n—1)

< Pl)+(n—-1)=—(n—-1),

since n > 3 and a routine exercise shows that P decreases with  when n > 3. Applying this
and Lemma 6.3, we obtain

GLr) < —(n—1)— = 1)2(" =2 "(”2_ Doy,

as required. O

Theorem 6.6. Let A and B be finite subsets of E* with dim B = n. Then

1

A+ BV > A"+ (IB] =n)t/" (25)
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Proof. The proof is by induction on the dimension n. When n = 1, (25) is just the trivial
estimate (11). Suppose that n > 2. By Theorem 5.1, we may assume that B is a long simplex
and A is a B-initial segment.

Let n = 2. By squaring and rearranging (25) we see that we require

(14 + B| = |A] = b/2)* — 2b| A > 0,
where we write b = |B| — n as in the proof of Theorem 6.5. By (21) and (22), this becomes

<b(r1+1)+(p+1)+1—|R|—g)Q—Qb<w+(l)+1)(ﬁ+1)+72+1> >0,

Multiplying out, we get
b 2
2b(T1—T‘2—(T1+1)|R|)+ <p+2— |R|—§> ZO,

which is true since r; > ry and either o > 0 and |R| =0, or r, = —1 and |R| = 1.
Assume that n > 3 and that (25) holds for dimensions less than n. Let the maximal
B-weight of any point in A be m/b, m € N. Then A = X UY, where

-1
X:{xEZ:‘L:wB(x)Sm }

b

and Y is a subset of the set m

{x € wp(x) = ?}

contained in a hyperplane (compare (16)). We can choose an r > 0 such that

. r+n—1 r+mn-—1
w07 ()

for some ¢ with 1 < ¢ < b. (Compare (21), where r; and p + 1 have been replaced here by r
and ¢, respectively.) Notice that

. r+n r+n
|X+B|_b< n >+q<n_1>

and that Y C X + B. Therefore |A+ B| =|X + B|+ |(Y + B) \ Y.

The set (Y + B) \ 'Y is contained in a hyperplane H parallel to the one containing Y. It can
be viewed as the vector sum of a translate of Y in HNZ" and an (n — 1)-dimensional simplex
in H NZ" containing n points (a translate of the set {z € Z% : wg(x) = 1}). Applying (25)
to these translates in the (n — 1)-dimensional lattice H N Z", we obtain
1

1/(n—1) 1/(n—1)
(Y + B)\Y| > Y| +«n—UDW“”'

Let y = |V,

1/(n—1 1 n
¢(y) = (y /(n=1) + ((n — 1)!)1/(n—1)> (26)
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for y > 1, and ¢(0) = 0. Then

Az (0 ) e (15 ) +ot

n

It remains to show that

Flha.r = <b< Tzn ) +q<2t? ) +¢(y>>1/n

_ . 1/n b 1/n
L)) ) -G

for the appropriate values of b, ¢, r, and y. We shall consider these as real variables to allow
differentiation with respect to them. In view of (21), (22), and the identity F(b,b,r,y) =
F(b,0,7 4+ 1,y), it will suffice to show that F' > 0 in the two regions

Q0 ={(bg,my) ER* :b>1,0<qg<b—1,7>0,y =0}
and
n—1

Qo ={(bygry) ER":b>1,0<¢<b-1,r20,1<y< <r+”—1>}’

where the lower bound for ¢ in €2; has been lowered by one to simplify some of the calculations.
Consider first the region €2;. Let

ban=((72") o (271))

In Qq, the inequality F' > 0 is equivalent to

b 1/n
Gb,q.r)— Gbgr—1) > (—) |

n!

so by the mean-value theorem it suffices to prove that

oG ()"
or — \n! '

r+n ”L r+n ”L
oG b( B )izzlrﬂ'“Lq(n_l)i:Qrﬂ'
or G(b,q,r)" ! '

We have
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Then
n(TFNY < 1 a1 A NC A O r+n
v _ (D) 5k ({0 B (010 £4) ()
n@r@q B G(b,q,r)?n1
<r+n>
n—1 r+n "1 r4n | e 1 n—1 r+n
= —+b - b :
nG(b, q,r)*1 <q<n—1>;r+i+< n )Z,ZQT-Fi 7“—0—1( n
It follows that G /Or has a unique minimum when
b -1
¢=- e —(r+1)
1
z':ZQH—Z
Substituting this value of ¢, we obtain
b [ TN
aG > r+1 n
Mo = (n—1)/n

b (7’—|—TL> n—1
7‘+]. Ul 1

1=2

n n (n—1)/n n
= n <£> ) ( nil Zi:Q TLH >n i Y
n! (I, - )1/("—1) n! ’

i=2 r+i

by the arithmetic-geometric mean inequality. (Note that equality cannot hold in the latter
because n > 3.) Therefore F' > 0 in 2.

Now consider the region Q,. Suppose that F(b',¢',r',y") < 0 for some (V',¢',7",y') € Q.
We claim that F' has a minimum in the set Qo(r') = {(b,q,7,y) € Qo : r = r'}. To see
this, let {(b;, ¢, ", y:)}, i € N, be a sequence such that F(b;,q;,r',y;) tends to the infimum
of F'in Qy(r'). Since Qy(r') is closed, this infimum is a minimum if the sequence {b;} is
bounded. However, if {b;} is unbounded, we may, by taking a subsequence if necessary,
assume lim;_,., b; = co. Then

!
0> lim M — lim F (1,@#,0) > 0,
1—00 b/” 1—00 bz
the last inequality holding because (1,¢;/b;,r’,0) € €; and Q; is closed. This contradiction
proves the claim. Writing ' = rg, we conclude that F' has a minimum at some point zq =

(bo, @05 70, Yo) in Qa(rp).
The following notation will be convenient. Let

_|_
C:b0<7°0n n)—i—qO(:;)—_i_IL)-ng(yo),
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ro+mn—1 ro+mn-—1
D:b0< 0 n )"‘CIO( O’I’L—l >+?J0,
. g (n—=1)/n
=35 ,

n—1 1/(n-1)
A= (H(r0+i)) — 7.

i=1
The curve z(t) = (tbo, tqo, 70, Yo), t > 1 is contained in (ry). By the minimality of F'(z)
and direct calculation, we find that

and

¢ (yo) Yo o OF oF|  OF
F(Zo) T C-D/n + Do-jn nby b . + nqo a—q _ = HE(ZO) > 0. (27)
Also, using the fact that y¢'(y) < ¢(y), the inequality
1 OF  OF oF
—F(z) > b— — — 28
GE@) 2 bt pg Yy (28)

can be verified by expanding the right-hand side. Consequently, the assumption F(z) < 0
and (27) imply that 0F/0dy < 0. By the minimality of F'(2g), yo must be the maximal value

of y in Q5(rp), namely
. ro+n—1 . (7“0+)\)n_1
y"‘( n-1 )‘ (=D
Then, by (26),
(ro +A+1)"*
(n—1)!

d(yo) =

Using (27) again, we obtain the estimate

n—1
> ¢ () — rotA+l _ (29)
Yo o + A
Next, we evaluate F'(zg) from its definition as follows:
b 1/n ro 4+ \ n—1\ 1/n
F(z) = - <n_0') + (gD ) (%) (boro + ngo + n)'/"

\%

bO 1/7’1 TO + )\ + ]. (n—l)/n bOTO + an + n 1/n
() ((W‘l ot b !
B b_g L/n borg + ngy +n L/n 1
N n! bo?"o + bo)\ ‘

Since F(zp) < 0 by assumption,

ngo +n < boA. (30)
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By the arithmetic-geometric inequality, A < n/2, so by > 2(qo + 1) > 2. It follows that the
curve z(t) is contained in Qy(rg) for ¢ in an open neighborhood of 1, so that there must be
equality in (27). Also, since ¢o < by/2, (0F/0q)(29) > 0, and computing the latter yields
o+ "N
To + 1 ’

We claim that (0F/dq)(z) = 0. Indeed, suppose that (0F/dq)(z,) > 0. Then the minimal-
ity of F'(zy) implies that gy = 0. Since by > 2, (0F/9b)(z9) = 0, and expanding this equation,
we obtain

(31)

(n=1)/n (n—1)/n
; > =z (ro(ro + A" + n(ro + A)" ' /b) ,

(ro4n)(ro+A)" " —roz(ro+ A" =z <
that is,

5 (n—1)/n
(’l“o + n)(To + )\)n—l = <7°0(7°0 + )\)n—l + (’l“o + )\)(n—l) /n (’I“o + %) ) .
By (30), n/by < A, so
(ro +n)(ro + N1 < w(rg + 1) (rg + N)" L.

This implies that x > (rg + n)/(ro + 1), contradicting (31) and establishing the claim.
Therefore (0F/0q)(z0) = 0 and then x = (ro +n)/(ro + 1). From (0F/0b)(zy) = 0 we now
obtain

n—1 n—1 n—1 ngo +n n—1 (=
(ro+n)(ro + A) = arg(ro+N)"" " +ax|{ro(ro+ A" + 2 (ro + A)
0

(n=1)/n

o+ "N n—1 ngo +n (n=1)2/n

= + A + + + A .
To + 1 (TO (TO ) (TO b() ) (TO )

This yields

(n—1)/n
ngop +n
To + 1= To + <7’0 + o > (TO + A)(l—n)/n’

bo
or N
ngo +n
A= .
bo
This contradicts (30) and completes the proof. O

7. INEQUALITIES FOR THE LATTICE POINT ENUMERATOR

The following result is an immediate consequence of Theorems 5.1 and 6.6.
Corollary 7.1. Let P and () be convex lattice polytopes in E™ with dim Q) = n. Then
n(n —1)

G(P+Q) > G(P) + (n— 1)G(Q) + (G(P) — n)" V" (G(Q) — n)"/" — —

(32)
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if G(Q) < G(P), and

W(G(Q) —n)l/"> | (33)

In two dimensions, the symmetry of (32) with respect to P and @ is restored. It turns out

that with the extra assumption that dim P = 2, a quite different approach yields a slightly
better inequality than (32) when n = 2, together with precise equality conditions.

Theorem 7.2. Let P and ) be convex lattice polygons with dim P = dim () = 2. Then
G(P+Q) > G(P) + G(Q) + (2G(P) — b(P) — 2)(2G(Q) — b(Q) — 2))/* - 1,

GP+Q) > (G(P)l/“ +

(34)
with equality if and only if P and ) are homothetic.

Proof. By Pick’s theorem (9), we have

b(P)

V(P)=i(P)+ =5 - :G(p)—@

_]_’

and similarly with P replaced by (. By the Brunn-Minkowski inequality (10), we obtain

<C¥(P+Q)—b(PQi+Q)—1)1/2 > <G(P)—@— )1/2+ <G(Q)—@—1>m.

Then (34) follows from squaring both sides and applying the equation

b(P + Q) = b(P) +b(Q), (35)
which is easily proved by comparing the edges of P and () parallel to a fixed edge of P + Q.
The equality conditions for (34) follow directly from those of (10). O

It is worth noting that (34) is not always better than the case n = 2 of (33). Indeed, when
i(P) =1i(Q) =0, (34) becomes

G(P+Q) > G(P)+G(Q) + (G(P) —2)"* (G(Q) - 2)"* - 1.
So (33) is better if

(G(Q) -2 (2G(P)'” = (G(P) - 2)*) > G(Q)/2 (36)
Now let P = conv {(4,0),(4,1): 7 =1,...,m} and @ = conv {(0,0), (1,0),(0,1)}. Then (36)

becomes
(4m)t? — (2m — 2)Y/2 > 3/2,
or

1 2
36m?* — 51m + ({) > 32m(m — 1),

which is true for large enough m.
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Corollary 7.3. Let P and @) be convezx lattice polygons with dim P = dim Q) = 2. Then
G(P+Q) > G(P)+G(Q) + ((G(P) = 2)(G(Q) - 2))'* - 1, (37)

with equality if and only if (i) @ is a translate of P and i(P) = 0, or (ii) @ is a translate of
2P and G(P) = 3.

Proof. We obtain (37) from (34) on noting that b(P) < G(P). Using the equality conditions
for (34), we see that equality holds in (37) if and only if P and @ are homothetic and i(P) =
i(Q) = 0. Then either (i) holds or, translating P if necessary, we have @ = rP, r € Q, and
i(P) =i(Q) = 0. Clearly we may assume that r = k/l > 1, where k and [ are integers with
greatest common divisor equal to 1. Then P’ = (1/I)P is also a nondegenerate convex lattice
polygon and Q = kP'. Now P’ contains three noncollinear lattice points, so their centroid ¢
is such that 3c is a lattice point in the interior of 3P’. Therefore ¢(3P") > 0. It follows that
k = 2 and hence that [ = 1 and Q = 2P. If G(P) > 3, then there are lattice points z, y in
bd P such that the line segment [x,y] meets int P. This implies that the lattice point z + y
belongs to the interior of @, so i(Q)) > 0. Therefore we must have G(P) = 3 and Q = 2P,
and this also satisfies (37). O

Corollary 7.4. Let K and L be convez lattice sets in Z? with dim K = dim L = 2. Then
K+ L| > |K| + |L| + (K| - 2)(IL] - 2))"/ - 1, (38)

with equality if and only if (i) L is a translate of K and i(conv K) = 0, or (ii) L is a translate
of 2K and |K| = 3.

If |L| < |K]|, then the restriction on the dimension of L is generally necessary in the previous
corollary. To see this, take, for example, K to be the long simplex K = {0, €5, €1, 2e1,...,5e1},
with |[K| = 7, and L = {o,e1,2e;} with |L| = 3. Then |K + L| = 11, while the right-hand
side of (38) is 9 + /5.

For the remainder of this section, we investigate difference sets.

If A is a finite subset of E", it is easy to see that

|IDA| < |A]? — |A] + 1.

(See, for example, [29]. This paper also provides a useful introduction to results concerning
lower bounds for | DA[; precise estimates are available when n < 3, but in general the problem
appears to be open.) In general, this is all one can say, even for finite subsets of Z". For
example, equality holds for the subset A = {(k, k%) : k = 0,1,...,m} of Z% The following
Rogers-Shephard type inequality for the lattice point enumerator provides a much stronger
bound for planar convex lattice sets.

Theorem 7.5. Let P be a convex lattice polygon. Then
G(DP) < 6G(P) — 2b(P) — 5, (39)
with equality if and only if P is a triangle.



30 R. J. GARDNER AND P. GRONCHI

Proof. By Pick’s theorem (9), we have
b(P)
G(P) = V(P)+ == +1. (40)

The Rogers-Shephard inequality in the plane (see [28, Section 7.3] and [5, Section 53]; this
special case is due to Blaschke and Rademacher) states that if K is a planar convex body,
then

V(DK) < 6V(K), (41)
with equality if and only if K is a triangle. From (40), (35), and (41), we obtain

G(DP)=V(DP)+ b(l;P) +1<6V(P)+b(P)+1=6G(P)—2b(P)—5,
with equality if and only if P is a triangle. O
Corollary 7.6. Let K be a convez lattice set in Z>. Then
|IDK| < 6| K| — 2b(conv K') — 5, (42)

where equality holds if and only if conv K is a triangle.

REFERENCES

[1] I. J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer, Berlin, 1994.

[2] S. L. Bezrukov, Isoperimetric problems in discrete spaces, Extremal Problems for Finite Sets, Visegrad,
Hungary (1991), Bolyai Society Mathematical Studies 3 (Budapest), J’anos Bolyai Math. Soc., 1994,
pp. 99-91.

[3] B. Bollobas and I. Leader, Compressions and isoperimetric inequalities, J. Comb. Theory A 56 (1991),
47-62.

[4] , Sums in the grid, Discrete Math. 162 (1996), 31-48.

[5] T. Bonnesen and W. Fenchel, Theory of Convex Bodies, BCS Associates, Moscow, Idaho, U.S.A.,
1987. German original: Springer, Berlin, 1934.

[6] C. Borell, Capacitary inequalities of the Brunn-Minkowski type, Math. Ann. 263 (1983), 179-184.

[7] S. Campi, A. Colesanti, and P. Gronchi, Shaking compact sets, Contributions to Algebra and Geometry,
to appear.

[8] M. H. M. Costa and T. Cover, On the similarity of the entropy power inequality and the Brunn-Minkowksi
inequality, IEEE Trans. Information Theory 30 (1984), 837-839.

[9] A. Dembo, T. M. Cover, and J. A. Thomas, Information theoretic inequalities, IEEE Trans. Information
Theory 37 (1991), 1501-1518.

[10] P. Erdos, P. M. Gruber, and J. Hammer, Lattice Points, Longman Scientific and Technical, and John
Wiley, Bath and New York, 1989.

[11] G. Ewald, Combinatorial Convezity and Algebraic Geometry, Springer, New York, 1996.

[12] R. J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995.

[13] R. J. Gardner and P. Gritzmann, Discrete tomography: Determination of finite sets by X-rays,
Trans. Amer. Math. Soc. 349 (1997), 2271-2295.

[14] A. Granville and F. Roesler, The set of differences of a given set, Amer. Math. Monthly 106 (1999),
338-344.

[15] P. Gritzmann and J. M. Wills, Lattice points, Handbook of Convexity, ed. by P. M. Gruber and J. M.
Wills (Amsterdam), North-Holland, 1993, pp. 765-797.




A BRUNN-MINKOWSKI INEQUALITY FOR THE INTEGER LATTICE 31

[16] M. Gromov, Convex sets and Kdhler manifolds, Advances in Differential Geometry and Topology (Tea-
neck, NJ), World Scientific Publishing, 1990, pp. 1-38.

[17] G. T. Herman and A. Kuba (eds.), Discrete Tomography: Foundations, Algorithms and Application,
Birkhauser, Boston, 1999.

[18] D. Jerison, A Minkowski problem for electrostatic capacity, Acta Math. 176 (1996), 1-47.

[19] J. Kahn and N. Linial, Balancing extensions via Brunn-Minkowski, Combinatorica 11 (1991), 363-368.

[20] D. L. Kleitman, Extremal hypergraph problems, Surveys in Combinatorics, ed. by B. Bollobas (Cambridge),
Cambridge University Press, 1979, pp. 44-65.

[21] M. B. Nathanson, Additive Number Theory - Inverse Problems and the Geometry of Sumsets, Springer,
New York, 1996.

[22] A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 405-411.

[23] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press,
Cambridge, 1989.

[24] J. Rosenblatt and P. D. Seymour, The structure of homometric sets, SIAM J. Alg. Disc. Meth. 3 (1982),
343-350.

[25] 1. Z. Ruzsa, Sum of sets in several dimensions, Combinatorica 14 (1994), 485-490.

[26] , Sets of sums and commutative graphs, Studia Sci. Math. Hungar. 30 (1995), 127-148.

[27] , Sums of finite sets, Number Theory, New York Seminar 1991-5 (New York), Springer, 1996,
pp. 281-293.

[28] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge,
1993.

[29] Y. Stanchescu, On finite difference sets, Acta Math. Hungar. 79 (1998), 123-138.

[30] , On the simplest inverse problem for sums of sets in several dimensions, Combinatorica 18 (1998),
139-149.

[31] R. Webster, Convezity, Oxford University Press, Oxford, 1994.

DEPARTMENT OF MATHEMATICS, WESTERN WASHINGTON UNIVERSITY, BELLINGHAM, WA 98225-9063
E-mail address: gardner@baker .math.wwu.edu

IsTITUTO DI ANALISI GLOBALE ED APPLICAZIONI, CONSIGLIO NAZIONALE DELLE RICERCHE, VIA S. MARTA
13/A, 50139 FIRENZE, ITALY
E-mail address: paoloQiaga.fi.cnr.it



